

Security Evaluation of Vascular Biometrics

4th May, 2016.

Akira Otsuka, Tetsushi Ohki AIST, Japan

How to evaluate the Security of Biometrics Two Standards

Common Criteria

- 5 levels of Attack Potential (AP)
 Basic, Enhanced-Basic, Moderate, High, Beyond High
- Tester makes the best efforts to attack the TOE
 If no attack is found within the given AP,
 TOE is considered secure against any attack below AP.

ISO/IEC 30107, "Biometric Presentation Attack Detection"

Attack Presentation Classification Error Rate

$$APCER_{AP} = \max_{PAIS \in \mathcal{A}^{AP}} \frac{1}{N_{PAIS}} \sum_{i=1}^{N_{PAIS}} (1 - Res_i)$$

PAIS: Presentation Attack Instrument Species \mathcal{A}_{AP} : a subset of PAI species with attack potential at or below AP

Relation between AP and APCER(1)

Relation between AP and APCER(2)

A Gap between Theory and Practice

How to close the GAP?

Sensor-independent Security Evaluation

- Same test set can apply many TOE's (Ideally)
- That's good, but...
 - "Universal" attack instruments (applicable to many TOE's) are hard to produce in many cases
 - Palm vein vs Finger vein / Front vs Side finger vein

Sensor-dependent Security Evaluation

- Provide (as much as possible) internal specification of TOE to test labs. Test labs will create(or provided) Simulated Sensor/Algorithm:
 - Sensor Specification Simulated Sensor
 - Algorithm Specification Simulated Algorithm
- Create "good attack instruments" based on simulated sensor.

Variety of Vascular Biometrics

(I) Palm Vein Scanner Reflective

(II) Font Finger Vein Scanner Direct Transmissive

(III) Side Finger Vein Scanner Reflective

(IV) Front Finger Vein Scanner Indirect Transmissive

Sensor-dependent Security Evaluation

 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$: Presentation Attack Instruments (PAI) sepcies

PAI species α_i is indistinguishable from Bona Fide presentation by a sensor if and only if

$$APCER_{\alpha_i} + BPCER \approx 1$$

Set of PAIs on each sensor narrows down the set of PAI on TOE

 $A_{\text{TOE}} \supseteq A_{\text{NIR}} \cap A_{\text{Cond}} \cap A_{\text{Blood}}$

Sensor-dependent Security Evaluation

Preliminary Experiment

Example TOE

[TV13] Finger Vein Sensor

Source) Ton, Bram T., and Raymond NJ Veldhuis. A high quality finger vascular pattern dataset collected using a custom designed capturing device. Biometrics (ICB), 2013 International Conference on. IEEE, 2013.

Simulated Sensor

Source) AIST

	Example TOE	Simulated Sensor
Image Sensor	C-Cam Tech. BCi5 1280x1024	OmniVision OV5647 2592x1944
NIR Filter	B+W 093 IR filter 800nm - 930nm band-pass filter	Asahi Spectra M.C. 850/12nm φ25 850nm-centered band-pass filter
Light Source	850nm Oslam SFH4550 x 8 LED Adaptive Intensity Control	850nm Oslam SFH4550 x 5 LED Non-adaptive Intensity Control
Algorithm	bob.fingervein*	bob.fingervein*

*) idiap, available at https://github.com/bioidiap/bob.fingervein

Quality Control of Fake Samples

Control: Improve Sensor and Fake Production until Fake is indistinguishable from Live on the Simulated Sensor

 $APCER_{FAKE} + BPCER_{LIVE} \approx 1$

Fake Production

(A) Paper / Histogram Equalization

Live Sample

(B) OHP / Histogram Equalization

(C) Paper / PSF Deconvolution

Material / Image Process

OHP Thick Paper Histogram Equalization PSF Deconvolution

Preliminary Experiment details

Biometric Samples		
Sensor	Original NIR Sensor (Type II: Front Transmissive Vein Scanner)	
Number of Subjects	2	
Number of Samples	Left and Right Index Finger x 8 samples each 1 as Gallery, 7 for Probe	
Spoof Production		
Material	OHP (for Laser Printer), Thick Paper (Thickness 175µm, Weight 158g/m²)	
Image Enhancement	CLAHE (Contrast Limited Adaptive Histogram Equalization), PSF Deconvolution (Wiener Deconvolution of Point Spread Func.)	
Verification		
Algorithm	bob.fingervein (Algorithm [Miura2005])	
Verification Count	Live-Live Genuine: 224 pairs Live-Live Imposter: 768 pairs Fake-Live Genuine: 224 pairs	

Preliminary Experiment Result

Conclusion

- In Sensor-independent Security Evaluation (Toolkit),
 - "Universal" presentation attack instruments (applicable to many sensors) are hard to produce especially in vascular biometrics.
- Introduced Sensor-dependent Security Evaluation
 Test labs are provided (as much as possible) internal specification of TOE.

 Test labs will create(or provided) Simulated Sensor/Algorithm
 - Quality control of Presentation Attack Instruments
 - Narrow down the (infinitely many) set of PAIs to the (small) set of the most effective PAIs.
- Shown the preliminary experimental results
 - Quality measurement improves the quality of PAIs.